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ABSTRACT: We demonstrate that graphene placed on top of curved
substrates offers a novel approach for trapping and guiding surface
plasmons. Monolayer graphene with a spatially varying curvature exhibits
an effective trapping potential for graphene plasmons near curved areas
such as bumps, humps, and wells. We derive the governing equation for
describing such localized channel plasmons guided by curved graphene
and validate our theory by first-principle numerical simulations. The
proposed confinement mechanism enables plasmon guiding by the
regions of maximal curvature, and it offers a versatile platform for
manipulating light in planar landscapes. In addition, isolated
deformations of graphene such as bumps are shown to support localized surface modes and resonances, suggesting a new
way to engineer graphene-based metasurfaces.
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Unprecedented optical properties make graphene a
promising plasmonic material with great potential for

practical applications ranging from optical routing1−5 to
nonlinear optics,6 optomechanics,7 and sensing.8 In addition
to the relatively strong and tunable electromagnetic response of
this one-atom-thick material, it was shown that at infrared
frequencies graphene supports surface plasmon-polaritons
(SPPs) with extreme confinement and propagation character-
istics controllable by doping.9 In particular, thanks to the strong
dependence of its optical characteristics from electric bias,
graphene is on the path to be widely used for electro-optical
modulation.1,10 The possibility of electrostatic doping enables
an efficient control over the electron density at the Fermi level,
which defines the high-frequency optical response of
graphene.11−15 With tremendous success in graphene elec-
tronics, these unique capabilities enable integration of
plasmonic and electronic devices on the same substrate16−20

and even the design of tunable cloaking devices.21

Presently, two of the most common approaches to utilize the
unique plasmonic response of graphene for guiding applications
rely on (i) inhomogeneous gating of graphene22,23 affecting its
local plasmonic response and (ii) subwavelength-scale pattern-
ing of the graphene layer, giving rise to localized plasmonic
resonances.5

In this paper, we propose an alternative approach to engineer
plasmonic guiding properties of graphene by employing its
property to confine and scatter light by curved regions such as
extended one-dimensional humps and local two-dimensional
deformations. Technologically, such curved graphene profiles,
shown schematically in Figure 1a,b, can be either fabricated by

transferring graphene onto curved dielectric substrates or
grown directly by laser ablation on the structured surface of SiC
demonstrated recently.24 In particular, we demonstrate
plasmon guiding by a bump of monolayer graphene, which
effectively operates as a plasmonic channel waveguide.25−33 In
addition, we show that a local isolated deformation of graphene
in the form of a bump supports local surface plasmonic
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Figure 1. Schematic view of convex curved substrates covered by
graphene and related global Cartesian and local curvilinear coordinate
systems. (a) and (b) correspond to the cases of one- and two-
dimensional curved surfaces, respectively.

Article

pubs.acs.org/journal/apchd5

© 2016 American Chemical Society 875 DOI: 10.1021/acsphotonics.6b00116
ACS Photonics 2016, 3, 875−880

pubs.acs.org/journal/apchd5
http://dx.doi.org/10.1021/acsphotonics.6b00116


resonances. The localized plasmonic modes studied here differ
from the modes supported by gratings that can be generated in
graphene by acoustic or elastic waves.34,35

It has been already established that a curved graphene surface
can play a role of an effective potential for electrons and
phonons; for example, it may support spatially localized
phonons.36 Similarly, we may expect that graphene plasmons
can be modified by effective geometric potentials, as this was
shown earlier for curved metal−dielectric interfaces.37 We
notice that the study of the propagation of light in curved
dielectric space has attracted some special attention due to
novel opportunities to guide and focus light.38−40 Here, we
extend these ideas to the case of plasmons in curved graphene
and demonstrate substantially different regimes for engineering
plasmons in curved graphene.

■ RESULTS AND DISCUSSION
Analytical Approach. As the first step, we explore the

capability of trapping light with the use of an analytical
approach assuming a graphene surface of small one-dimen-
sional curvature. Specifically, we consider a graphene
monolayer placed on a curved interface between two dielectric
media with permittivities ε− and ε+, as shown in Figure 1a. Such
a graphene-coated surface forms a channel waveguide for
surface plasmons, thus enabling a two-dimensional (2D) spatial
localization of light, alternative to waveguides created by
graphene conductivity modulation.22,23 We base our analytical
consideration on Maxwell’s equations solved in the adiabatic
approximation within the small-wavelength limit.
We assume that an inhomogeneity in the graphene profile is

described by a smooth function x = f(z), and we look for modes
propagating along the y axis. For convenience, the curvilinear
orthogonal coordinate system {ξ, y, s} bound to the reference
curve x = f(z) is used in place of the Cartesian coordinate
system {x, y, z}. Accepting harmonic exp(−iωt) time-
dependence, Maxwell’s equations can be written as follows:
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where k0 = ω/c is the wavenumber in free space, σ(ω) ≡
iσ(I)(ω) + σ(R)(ω) is the linear frequency-dependent surface
conductivity of graphene, and the function ε(ξ) describes the
dielectric permittivity distribution,
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The Dirac delta function δ(ξ) in eq 1 indicates that the
graphene layer is placed at ξ = 0, and the subscript τ refers to
the field component tangential to the surface. In our case of
low-energy excitations close to the Dirac points, where
transitions occur within the π−π* electronic bands, the normal
component of the induced current density in graphene is
negligible. The marginal character of the contribution normal
to the surface is also evidenced by the earlier experimental
studies.41

Equation 1 leads to
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is continuous at ξ = 0, and the

vector operations can be calculated using the Lame coefficients
given as hξ = 1, hy = 1, hs = 1 − ϰ(s), ξ ≡ 1 − ξ/R, where ϰ(s) ≈
f″(z) is a signed curvature of the reference cylinder line x = f(z)
and R = 1/ϰ(s) is the local radius of curvature.
Following the approach elaborated earlier in refs 42−45 we

derive the equation for the slowly varying plasmon amplitude,
employing the asymptotic description often used in the paraxial
optics and physics of optical solitons.46 To develop the
consistent perturbation theory, we introduce a small parameter,
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assuming the losses in graphene and spatial inhomogeneity to
be small (β2 ≪ 1). Accordingly, the solution of eq 3 is sought
in the form
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where s y( , ) is the slowly varying amplitude of the plasmonic
mode propagating along the curved channel and ksp(ω) satisfies
the dispersion relation
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Substituting eqs 4 into eq 3 and maintaining zeroth-order
terms in β leads to the dispersion relation 5 and gives the
transverse profile for the plasmon on a locally flat graphene,
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The correction H(1) of the first order in β is determined from

∇·H = 0 as ξ= ∂ ∂H i k s h( / )( / ) ( )(1)
sp .

The second-order correction H(2) for ξ ≠ 0 satisfies
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By imposing the boundary conditions on solutions of eq 7 at
the interface ξ = 0,

ξ ξ

ξ ξ
π σ ω σ ω

= + = = − ≡

= + − = −
= − +

E E E

H H

c
i E

( 0) ( 0)

( 0) ( 0)
4

( ( ) ( ) )

y y y

R I
y

(2) (2) (2)

(2) (2)

( ) ( ) (2)

where

ACS Photonics Article

DOI: 10.1021/acsphotonics.6b00116
ACS Photonics 2016, 3, 875−880

876

http://dx.doi.org/10.1021/acsphotonics.6b00116


ξ
ε ξ

ξ
κ

= ± = ∂
∂

= ± −
± ±

E
ik

H
R

( 0)
1

( 0)
1

y
(2)

0

(2)

we find that the amplitude of the plasmon satisfies the
equation
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is an effective geometric potential for plasmons.37

Remarkably, the result of ref 37 for plasmons at a curved
metal−dielectric interface can be retrieved from eq 8 by setting
σ(ω) = 0 and assuming that the substrate possesses a plasma-
like frequency-dependent dielectric permittivity ε−. In this case
ε−/κ− = −ε+/κ+, that leads to =g s( ) − =κ κ
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. Besides, the case of a constant curvature

describes TM plasmons propagating along cylindrical graphene-
coated nanowires.47

As follows from eq 8, the symmetric dielectric environment,
ε− = ε+ = ε, suggests g(s) = 0 and implies that no localization to
the curved region is possible in the case of 1D curvature, while

the loss coefficient is found to be γ σ ω= π
ω
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agreement with that calculated earlier in refs 44 and 45, where
the equation for the correction H(2) is written with
incorporated boundary conditions using the formalism of δ
functions.
As an example, we consider the interface profile of the

Gaussian form. This results in inhomogeneous curvature, which
at some parts becomes a potential well capable of confining a
mode. In our calculations, graphene is described by the surface
conductivity written in terms of the Drude model
σ ω π ω τ= ℏ + − −i i( ) ( e / ) ( )2 2

F intra
1 1, where the Fermi energy

= 0.307F eV and τintra = 0.5 ps is the relaxation time. This
case of doped graphene satisfying ωℏ < F allows neglecting
the interband transitions and temperature effects.12 The
propagation distance for plasmons in this case can be as large
as 16 plasmon wavelengths (∼13.5 μm). However, the
approximation employing a local conductivity function has its
range of applicability, since the curvature may affect electronic
properties of graphene.48 By using the approach of ref 48 to
estimate the pseudomagnetic field induced by graphene strain,
we assume that this field is proportional to the curvature and
estimate the cyclotron energy to be ℏωc ≤ 0.02 eV for typical
smooth surface profiles with the scales of a few hundred
nanometers considered here. This number is significantly lower
than the frequencies of plasmonic surface waves (0.06−0.15
eV) studied here. Therefore, we do not expect the strain to
affect the dispersion of plasmons in our systems.

The confining potential corresponding to the Gaussian
channel operates as a 2D plasmonic waveguide with trapped
modes being eigenstates of the stationary Schrödinger-like eq 8,
shown in Figure 2. The first example considered here
corresponds to the substrate dielectric constant exceeding
that of the superstrate. Only one bound state is found for the
given set of parameters with its amplitude spatial dependence

= Δz y a z i k y( , ) ( ) exp( )sp . The position of eigenvalue Δksp

Figure 2. Top panels in (a) and (b): Effective potential (black solid
curves) and transverse profiles a(z) (au) of the trapped modes (blue
dotted curves) calculated for the Gaussian profiles f(z) = ±f 0 exp(−z2/
w2), f 0 = 200 nm, w = 506 nm, and dielectric permittivities ε+ = 1, ε− =
2 at the frequency ω0/2π = 16 THz, respectively. The red dashed line
levels the relative correction Δksp/ksp(ω0) to the wavenumber ksp(ω0)
= 22.4, k0 corresponding to the fundamental channel mode. Bottom
panels in (a) and (b): Normalized magnetic field distribution |H|/
|H|max of the modes shown in the top panels and obtained with the use
of a first-principle FEM solver.
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with respect to the trapping potential is indicated in Figure 2a
(top panel, red dashed line). The state appears to be less
localized to the curved region, with the fields primarily located
near the side regions of maximal positive curvature. The second
case studied has an inverted profile and also supports one
localized state illustrated in Figure 2b, top panel. One can see
that for this case the field is mainly localized at the central dip
(notch) having the maximal positive curvature and exhibits
quite strong localization in the in-plane transverse z direction.
Despite the approximation made in the derivation of the
analytical theory, we found that its applicability extends beyond
these limits. In particular, the case shown in Figure 2 compares
the results of analytical and first-principles calculations, which
appear to agree extremely well even for the value of small
parameter β2 ≈ 0.2.
We emphasize that in the present work we focus exclusively

on the effect of the geometrical potential, thus assuming that
graphene is chemically doped and has uniform distribution of
the Fermi energy F over its surface. The effect of a small
change in F on trapped modes is the same as that for
conventional plasmons on a flat graphene layer. In both cases
reduction in the surface conductivity leads to a stronger
confinement of the plasmons. However, at any given frequency,
as long as the change in the propagation constant caused by the
deviation in the Fermi energy is small in comparison with the
unperturbed wavenumber, it does not disrupt the described
trapping mechanism for plasmons in curved graphene. Note
that the sensitivity of the plasmons trapped by such geometric
potential to changes in the Fermi energy is mainly stemming
from the zeroth order contribution to the wavenumber ksp in
small parameter β. While the trapping mechanisms caused by
nonuniform distribution of doping have been reported
earlier,22,23 here we demonstrate that nonuniform gating is
not at all necessary to confine plasmons in lateral dimensions,
and the curvature alone can be sufficient for many practical
applications. Nevertheless, it might be of interest to endow
such systems with additional functionalities, for example,
tunability, by combining the geometric potential with that
induced by the electrostatic gating. It is straightforward to
expand our model to account for small variations of the
graphene conductivity caused by graphene gating of curved
substrates, by introducing an additional correction associated
with a coordinate-dependent conductivity. This correction may
modify the focusing properties dictated by the curvature and
bring desirable controllability of plasmons.
Numerical Approach. To validate the developed analytical

theory, first-principles numerical simulations are performed
with the use of commercial full-vector FEM solver COMSOL
Multiphysics. The graphene is modeled by the surface current
tangential to the curved interface between the substrate and the
superstrate: j = σEτ. The numerical results, shown in Figure
2a,b, bottom panel, are found to be in excellent agreement with
the results of our analytical theory.
While the applicability of our analytical model is restricted by

its perturbative nature and small curvatures, the possibility to
confine light with the curvature extends beyond this case.
Moreover, the transverse in-plane confinement of the channel
modes can be further improved when the curvature is
increased. To localize the mode, any of the channel dimensions
should be comparable to or exceed the wavelength of surface
plasmons on a flat graphene layer. The particular cases of
guiding by the strongly curved nonanalytic graphene profiles
are given in Figure 3a,b. Similar to the case of small curvatures,

the mode corresponding to graphene curved toward the high-
index material shows more localized mode at the center of the
curved region. As in any other open waveguiding system, any
perturbation of the dielectric environment will lead to
diffraction, scattering, and leakage of guided modes. However,
as long as the perturbations are small and smooth enough on
the scale of the plasmon wavelength, these effects will be
negligible. Therefore, the guiding mechanism will be robust to
the adiabatic changes in the width/height that happen on a
scale larger than 1 μm.
The proposed concept of light trapping in curved graphene

can be extended to the case of 2D profiles, such as circular
channels and hemispherical bumps. The resultant structures
possess cylindrical symmetry, and the trapped modes are
quantized with respect to the azimuthal direction. Numerical
results obtained in COMSOL by solving the full 3D FEM
problem for both cases shown in Figure 4a,b reveal a variety of
modes with increasing number of nodes as the frequency of the
mode gradually increases. As opposed to the channel modes,
and similar to the case of localized surface plasmons in metallic
nanoparticles, these modes are leaky, and therefore they have a
finite radiative lifetime.

■ CONCLUSION
We have suggested a novel approach to confine light in curved
graphene landscapes. We have shown that curved graphene
allows guiding surface plasmons trapped in the curved regions.
With the modern techniques of graphene transfer and growth
on prestructured substrates, our approach to confine and
manipulate light with the curved surfaces can serve as a versatile
platform for on-chip graphene plasmonics integration.

■ METHODS
Finite element method (FEM) calculations for a curved
graphene waveguiding geometry were performed with the use
of COMSOL Multiphysics eigensolver with periodic boundary

Figure 3. Channel waveguide modes found for the value of graphene
conductivity σ = 0.00035i S using the FEM method for ε+ = 1, ε− = 2:
shown is the surface charge density distribution ρs on the curved
graphene surface. The frequencies of the eigenmodes plotted in (a)
and (b) are 21.1 THz and 23.9 THz, respectively. The geometrical
parameters of the curved region are the height (depth) of the channel,
which is 300 nm, and the width of the upper (lower) elliptical
segment, which is 200 nm, and the radius of curvature of the two lower
(upper) circular segments is 140 nm; the shown y-length is 1 μm.
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conditions imposed in the y propagation direction and a
cylindrical perfectly matched layer (PML) in the plane of
curvature. Graphene was modeled as a surface current set on a
curved interfacial surface. Localized graphene plasmons were
simulated in a spherical shell of the PML.
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